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Lattice mean-field method for stationary polymer diffusion

S. M. Scheinhardt-Engels,* F. A. M. Leermakers, and G. J. Fleer
Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Neth

~Received 15 October 2002; published 15 July 2003!

We present a method to study mean-field stationary diffusion~MFSD! in polymer systems. When gradients
in chemical potentials vanish, our method reduces to the Scheutjens-Fleer self-consistent field~SF-SCF!
method for inhomogeneous polymer systems in equilibrium. To illustrate the concept of our MFSD method, we
studied stationary diffusion between two different bulk mixtures, containing, for simplicity, noninteracting
homopolymers. Four alternatives for the diffusion equation are implemented. These alternatives are based on
two different theories for polymer diffusion~the slow- and fast-mode theories! and on two different ways to
evaluate the driving forces for diffusion, one of which is in the spirit of the SF-SCF method. The diffusion
profiles are primarily determined by the diffusion theory and they are less sensitive to the evaluation of the
driving forces. The numerical stationary state results are in excellent agreement with analytical results, in spite
of a minor inconsistency at the system boundaries in the numerical method. Our extension of the equilibrium
SF method might be useful for the study of fluxes, steady state profiles and chain conformations in membranes
~e.g., during drug delivery!, and for many other systems for which simulation techniques are too time con-
suming.

DOI: 10.1103/PhysRevE.68.011802 PACS number~s!: 36.20.2r, 66.10.Cb, 47.11.1j, 05.50.1q
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I. INTRODUCTION

Polymeric interfaces@1#, brushes@2#, vesicles@3#, and
individual polyelectrolytes@4# are examples of systems th
can be studied successfully by using the Scheutjens-F
self-consistent-field~SF-SCF! method @5,6#. This is a nu-
merical mean-field approach, yielding the~inhomogeneous!
volume fractions and all thermodynamic properties for
systemsat equilibrium. However, thestationary statesof
such systems are of great interest in the context of, for
ample, drug delivery over membranes, diffusion-control
reactions at catalyst surfaces or diffusion over techn
membranes in separation processes. To study such statio
polymer systems, the SF-SCF method needs to be exte
by dynamic equations and new boundary conditions.
implemented such an extension for a relatively simple s
tem, namely, the diffusion layer between two different hom
geneous mixtures, consisting of homopolymer blends or
mopolymer solutions. Such a system is of interest
polymer diffusion at long time scales. Our method to stu
the stationary polymer diffusion will be referred to as t
mean-field stationary diffusion~MFSD! method. Equilibrium
SCF methods have been extended to dynamic SCF met
before, but our focus is different. The objective of previo
extensions was to follow the evolution of a system towa
its equilibrium or any other stationary state. Specifically
was attempted by means of a dynamic version of the SF-S
method to follow polymer adsorption processes from ne
equilibrium towards equilibrium@7#. Two other methods~an
off-lattice dynamic self-consistent-field method@8# and a dy-
namic density functional theory@9,10#! were applied to study
the process of spinodal decomposition in~co-!polymer
blends. The dynamic density functional theory was also u
to investigate the structure development of polymer adso
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tion layers@11# and, more relevant to our study, the interfa
formation by polymer interdiffusion@12#. Here we will not
consider the evolution towards a stationary state but focus
a well-defined time-independent solution, that is, the~exact!
stationary state itself. Obviously, this restriction allows mo
efficient computation algorithms than the dynamic metho
that construct dynamical trajectories. Such methods nee
additional noise term in the diffusion equations to allow t
system to escape from local minima of the free energy pro
@8,10#. The density functional theory has recently also be
applied to study just the stationary state, but only in t
application to simple fluids@13#. As in the above-mentioned
dynamic mean-field theories, we do not consider hydro
namic interactions. At present, particle-based simulat
methods, which are rather time consuming, are best suite
study polymer dynamics in the presence of hydrodynam
effects @14#. Our method cannot deal with these hydrod
namic effects in full detail. However, the average effect
chain entanglements may easily be modeled in the MF
method by introducing effective mobility parameters.

Polymer diffusion has attracted attention due to its occ
rence and importance in many processes, such as phase
ration and spinodal decomposition, bio-adhesion, stabil
tion of polymer/polymer interfaces by copolymers, diffusio
controlled reactions, etc. A large activity in theoretical wo
@15–25# accompanies the experimental studies@26–32# in
this field. The theoretical interest arises from the fundam
tal problem of linking together thermodynamic and kine
properties of polymer mixtures. The mutual~or inter-
!diffusion coefficient, governing the relaxation of concentr
tion gradients by the mechanism of particle exchange, is u
ally written as a product of a thermodynamic factorT and a
kinetic factorK @15,16,20,23#. Interdiffusion is a collective
process, in contrast to tracer or self-diffusion, which co
cerns single-chain motions. The driving force for the latter
entropy and the mechanism may be described by the Ro
©2003 The American Physical Society02-1
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@33# or reptation @34,35# models. The tracer and sel
diffusion coefficients are relatively easily obtained from e
periments. A major topic of research has been on the q
tion whether the mutual diffusion coefficient can be writt
in terms of these tracer diffusion coefficients.

Two ~conflicting! attempts to find such a relation for b
nary systems are the slow-mode theory@15# and the fast-
mode theory@16,17#. The mutual diffusion coefficients o
both theories have the same thermodynamic factorT. How-
ever, the fast-mode theory predicts the kinetic factorK to
depend linearly on the tracer diffusion coefficients, wher
according to the slow-mode theory the inverse of the kine
factor depends linearly on the inverse of the tracer diffus
coefficients. This discrepancy originates from different
sumptions concerning the compressibility of the system
according to a statistical mechanical approach@19#, from dif-
ferent assumptions concerning the friction coefficient
tween the diffusing components. Some experiments ar
favor of the slow-mode theory@21,36#, but most experiments
seem to be described best by the fast-mode the
@27,30,31,37#. However, it is stated in Ref.@24# that the ini-
tial concentration relaxations as measured in the experim
may incorrectlyappear to be fast mode. Shearmuret al.
@28,29# suggest that the preference for the fast-mode the
may arise from the fact that experiments are usually p
formed at temperatures far from the glass transition temp
ture. Their experiments follow slow-mode behavior at lo
temperatures and fast-mode behavior at high temperatu
They find a transition region in which neither of these the
ries applies. A few theories for polymer diffusion have be
derived which reproduce the slow- and fast-mode result
some limiting cases. For example, a hybrid ‘‘fast-slow
theory was proposed@18#. According to this theory, there
exists a critical diffusion distance beyond which the diffusi
changes from fast-mode behavior to slow-mode behav
Jilge et al. @20# adopted an approach, which is similar to t
fast-mode theory, but they took into account cross coe
cients and vacancy concentrations. The slow- and fast-m
results were obtained by making some approximations,
they concluded that, in general, no simple relation exists
tween the mutual diffusion and the tracer diffusions. Mo
recently, Akcasu, Na¨gele, and Klein~ANK ! presented a sta
tistical mechanical theory that reduces to the slow- and f
mode models in the limits of, respectively, vanishing or lar
vacancy concentrations@23,38#. According to the ANK
theory, a cooperative diffusion coefficient is involved in t
mutual diffusion. The conclusions of this theory and
Shearmur’s observations@29# are opposite to the prediction
of Brereton@21# who constructed a linear combination of th
slow- and fast-mode theory.

The above re´suméillustrates that the behavior of collec
tively diffusing polymers is still controversial. We do not ai
at resolving this controversy. Instead, we show that it is p
sible to study stationary diffusion efficiently by our extensi
to the SF-SCF method. In principle, the flux equations t
are employed in our MFSD method can be chosen to c
form any of the proposed theories in the literature. For
flux equations, we have chosen the most widely used lim
ing cases: the slow- and fast-mode theories. The advan
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of this choice is that the continuity equation can be solv
analytically for some simple stationary systems. This allo
the verification of the MFSD results. Using the MFS
method to solve the equation of continuity, the driving forc
can be calculated exactly and the detailed conformation
chains may be studied. Moreover, MFSD calculations
much cheaper than simulations: it takes only minutes to
culate all characteristics of the desired stationary state.
equilibrium SF-SCF method, which is our starting point, h
proven its applicability to many situations in which statio
ary diffusion may be of interest.

This paper is organized as follows. In the theoretical s
tion ~Sec. II! we first describe the diffusion system for whic
we developed the MFSD method. We then outline the MF
method itself, thereby showing that it is based upon the id
of the equilibrium SF-SCF method. Attention is paid to t
evaluation of the driving forces for diffusion~segment
chemical potential gradients! and to the slow- and fast-mod
flux expressions. These flux expressions were originally
rived for binary mixtures, but they can easily be generaliz
to multicomponent systems, as we will demonstrate. We
each flux equation in combination with two ways to calcula
the driving forces for diffusion, so that we obtain four mo
els for the polymer diffusion. Section III presents the resu
of applying the MFSD method to these four diffusion mo
els. We aim at showing the concept of the MFSD meth
Therefore, we focus on the stationary diffusion profiles,
though much more information may be extracted from
MFSD calculations. In Sec. IV we discuss the performan
of the MFSD method by comparing its numerical resu
with analytical results. Moreover, we discuss the gene
characteristics of the diffusion profiles in athermal bina
and multicomponent systems. Section V summarizes
conclusions.

II. THEORY

A. System

We developed the MFSD method for a setup, as show
Fig. 1. Two homogeneous polymer bulk mixtures, denote
and II, are connected by a diffusion layer. Each of these

FIG. 1. Schematic representation of the system of study. Stat
ary diffusion occurs between two infinitely large bulk mixtures
and II which are ideally stirred, so that the volume fractions in the
mixtures are constant. The volume fraction profiles in the sys
are drawn as straight lines for simplicity.
2-2



o

-
th
A
t
s
A
w
e
n-
ch
a-
rin
th

e

er

c
er

a

.
om
g

d
e

th

e
nt
th
ey
. I
po
c
n
io

u
in

y
ts
to

yp

he
the

s
ncy.

n

-
m

F
als.

on-
e
also
un-
SF-
xed

e

ted
te

les
F
-

ff-
are
xi-
and
not
sity
the
o
For

LATTICE MEAN-FIELD METHOD FOR STATIONARY . . . PHYSICAL REVIEW E68, 011802 ~2003!
mixtures has its own composition, expressed in terms of v
ume fractions asfA

I , fB
I , fC

I , . . . , andfA
II , fB

II , fC
II , . . . ,

respectively. HereA,B,C, . . . , denote the various homopoly
mers or solvent molecules in the mixtures. It is assumed
both mixtures are infinitely large and continuously stirred.
a result, these solutions or blends can be regarded as
bulk mixtures with invariant compositions. The actual sy
tem of interest is the layer between the two bulk mixtures.
each side of the system the volume fractions are kno
~namely,f I andf II ) and our MFSD method calculates th
volume-fraction profiles in the diffusion layer for the statio
ary state, resulting from diffusion of the molecules for whi
m IÞm II , where them ’s are the chemical potentials. The st
tionary state is defined by constant material fluxes, ensu
that there is no accumulation of any component within
system:JA(z,t)5constant inz and t. Note that the flux is
taken to be dependent on thez coordinate only, wherez is the
direction along the diffusion layer. This means that we us
one-dimensional~1D! mean-field method. The diffusion
layer is divided inM lattice layers perpendicular toz.

At present, we model only homodisperse homopolym
and solvent molecules~regarded as monomers!. A system
containing copolymers would require a different approa
for the boundary conditions. In the results Sec. III only ath
mal systems will be considered~i.e., all Flory-Huggins pa-
rametersx are!. In the present theoretical section, we tre
the more general case of systems with interactions.

The calculation of the volume fractions~as functions of
segment potentials! is dictated by the stationarity condition
The derivation of the desired equation follows the steps fr
equilibrium SF-SCF theory, but requires a different Lagran
parameter, as shown in Sec. II B. From the theory outline
that section, we find an expression for the exact segm
chemical potential~Sec. II C!, which is inserted into the
Smoluchowski equation that describes the diffusion of
polymers in an external potential field~Sec. II D!. In our case
the external potential comprises contributions from segm
tal interactions and from the incompressibility constrai
The slow-mode and fast-mode theories are different in
way they deal with the incompressibility constraint. Th
thus yield different expressions for the segmental fluxes
Sec. II D these fluxes are derived in terms of chemical
tential gradients and concentration-independent diffusion
efficients. In Sec. II H, we rewrite them in terms of conce
tration gradients and concentration-dependent diffus
coefficients for analytical purposes.

B. The MFSD method

The equilibrium SF-SCF method@39# provides an easy
way to calculate volume fraction profiles for inhomogeneo
~multicomponent! systems at equilibrium. The polymers
these systems are described as chains of segments~compa-
rable with Kuhn segments!. Since we are considering onl
homodisperse homopolymers, the number of componen
equal to the number of segment types and we can refer
component just by referring to its constituent segment t
A,B,C, . . . . Thechain length of homopolymerA is given by
NA , i.e., the number of segments of typeA that form the
01180
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whole chain. The conformation of a chain is given by t
position of each segment. The SF-SCF method optimizes
partition functionQ for a lattice in which each lattice site i
occupied by a polymer segment, a monomer or a vaca
Consider a 1D system described byM lattice layers (z
51, . . . ,M ). Then the optimization of the partition functio
must be performed underM constraints:

(
A

fA~z!51 ;zP@1,M #, ~1!

where the sum overA denotes summation over all compo
nents~or over all segments, which is identical in our syste
of homodisperse homopolymers!. Therefore,M Lagrange pa-
rametersa(z) are introduced in the equilibrium SF-SC
method, which are interpreted as the space-filling potenti
The requirements for equilibrium then become

]

]nj
c F ln Q1(

z
a~z!H(

A
fA21J G50 ;nj

c , ~2a!

]

]a~z! F ln Q1(
z

a~z!H(
A

fA21J G50 ;zP@1,M #.

~2b!

The parameternj
c denotes the number of moleculesj in a

specified conformationc. Obviously, Eq.~2b! ensures the
constraint of incompressibility to be fulfilled. Equation.~2a!
dictates the way in which the volume fractionsf must be
calculated from given segment potentials to obtain the c
formation distribution with minimal free energy. The volum
fractions depend on the potentials, but the potentials are
dependent on the volume fractions, for example, due to
favorable segment-segment contacts. The equilibrium
SCF algorithm is an iterative procedure that leads to a fi
point for which the potentials are consistent with the volum
fractions that obey the constraints.

In the MFSD method, the volume fractions are calcula
similarly. Thus, the volume fractions in the stationary sta
correspond to that conformation distribution of all molecu
for which the free energy is minimal. We apply the SF-SC
free energy functional, which is valid for equilibrium sys
tems. It is common to use equilibrium functionals for o
equilibria, since usually the true free energy functionals
unknown@40#. We do not consider this as a serious appro
mation, since we are only interested in the steady state
not in the evolution towards the steady state. We thus do
need to include a noise term as is usually done in the den
functional theory. There is a small difference between
calculation off in SF-SCF and that in MFSD. This is due t
the extended set of constraints for the stationary state.
the stationary state, we have the constraints

fA~0!5fA
I ;A, ~3a!

fA~M11!5fA
II ;A, ~3b!
2-3
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(
A

fA~z!51 ;zP@1,M #, ~3c!

]fA~z!

]t
50 ;A,zP@1,M #. ~3d!

The first constraints@given by Eqs.~3a! and~3b!# are treated
separately by the boundary conditions~see Sec. II G!. The
next M constraints@Eq. ~3c!# are obeyed by additional sto
criteria for the iterations that must lead to the consiste
between the potentials and the volume fractions~see Sec.
II F!. The number of constraints left isM* ~number of seg-
ment types! @Eq. ~3d!#. We assume that there exists only o
volume fraction profile, which obeys all constraints and h
the minimal free energy. If this profile is given byfA

stat(z),
the constraints in Eq.~3d! may be summarized by

fA~z!5fA
stat~z! ;A,zP@1,M #. ~4!

The requirements for the stationary state become

]

]nj
c F ln Q1(

A,z
aA~z!$fA

stat~z!2fA~z!%G50 ;nj
c ,

~5a!

]

]aA~z! F ln Q1(
A,z

aA~z!$fA
stat~z!2fA~z!%G50

;A,zP@1,M #. ~5b!

We thus have the correct number of Lagrange paramete
we take a(z) to be dependent on the segment type. T
volume fractions in the stationary state are calculated in
same way as in equilibrium, but now by introducing the n
space filling potentialsaA(z) in the segment potential
uA(z). Following Ref.@41#, we have

uA~z!

kT
5aA~z!1(

B
xAB^fB~z!&1

uA
ref

kT
, ~6!

where the reference potentialuA
ref can be chosen arbitrarily

@In the case of copolymers all constraints should be writ
in terms offAi , the volume fraction of segmentsA which
are part of moleculei. The Lagrange parametersa ~and
therefore also the segment potentialsu) would be dependen
both on molecule type and on segment type. In SF-SCF,
segment potentials are always independent of the type
molecules@41##. The angular brackets denote the conta
weighted average over three layersz21, z, z11:

^fB~z!&5l21fB~z21!1l0fB~z!1l11fB~z11!.
~7!

l ’s account for the number of contacts between lattice, si
For a simple cubic latticel054/6 andl215l1151/6. The
potentialsuA(z) determine the Boltzmann-weighting facto
GA(z), GA(z,su1), andGA(z,suNA):
01180
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GA~z!5expH 2uA~z!

kT J , ~8a!

GA~z,su1!5GA~z!^GA~z,s21u1!&, ~8b!

GA~z,suNA!5GA~z!^GA~z,s11uNA!&. ~8c!

The quantityGA(z,su1) is the weighting factor for the las
segment of a chain of lengths, where segments is in layerz,
while segment 1 may be anywhere in the system. Simila
GA(z,suNA) is the weighting factor for the first segment of
chain of lengthNA2s11, where the first segment~s! is in
layer z, while the last segment (NA) may be anywhere. The
starting conditions for Eqs.~8b! and ~8c! are GA(z,1u1)
5GA(z) and GA(z,NAuNA)5GA(z). In terms of these
weighting factors, the volume fraction of segments of com-
ponentA in layerz must be calculated according to Eqs.~5a!
and ~5b! by

fA~s,z!5CA

GA~z,su1!GA~z,suNA!

GA~z!
, ~9!

whereCA is a normalization constant. Reference@41# con-
siders different ways to normalize volume fractions in eq
librium SF-SCF, but the MFSD results are not influenced
the choice ofCA , since the driving forces for diffusion ar
gradients that are independent of the constantCA . Equation
~9! can also be derived intuitively: the volume fraction
segments in layer z is given by the normalized weighting
factor for the probability to finds in z, while both the first
and the last segment of the chain may be anywhere in
lattice. The chain can be considered as consisting of
parts, one running from segments 1 tos and the other from
segments to NA . The desired weighting factor can thus b
decomposed into the end-segment weighting factors for th
parts @as in the numerator in Eq.~9!#. The denominator of
Eq. ~9! corrects for the double counting the effect of th
potential field felt by segments that connects the two chai
parts.

C. Segment chemical potentials

Since the partition function is known in the SF-SCF a
MFSD calculations, all desired thermodynamical quantit
may be calculated. We are interested in the diffusion of s
ments due to imposed gradients in the chemical potent
The segment chemical potential is defined as the deriva
of the free energy with respect to the volume fraction of t
segment under consideration. The resulting expression is@7#

mA
SCF~z!

kT
5

]~F2F ref!/kT

]fA~z!
52

]~ ln Q2 ln Qref!

]fA~z!

5
ln NACA

NA
2

uA~z!

kT
1(

B
xAB^fB~z!&

2
1

2 (
B

xABfB
ref , ~10!

so that the gradient of the segment chemical potential is
ily calculated by
2-4
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¹
mA

SCF~z!

kT
52¹

uA~z!

kT
1¹(

B
xAB^fB~z!&52¹aA~z!.

~11!

By these expressions we take into account the inhomog
ity of the system. In the following, we will therefore refer t
these potentials as the ‘‘exact segment chemical potentia
or the ‘‘SCF potentials.’’ Brochard@15# and Kramer@16#, on
the contrary, approximate the segment chemical potential
mA

app5mA
chain/NA , where N is the chain length and wher

mchain is obtained from the Flory-Huggins lattice theory@42#.
This definition for the segment chemical potential is le
accurate when the compositions change significantly wit
the region where the chain finds itself. Generalizing B
chard’s and Kramer’s approach for binary systems to mu
component homopolymer systems, we obtain for the s
ment chemical potential of segment typeA:

mA
app

kT
5

ln fA

NA
1

1

NA
2(

B

fB

NB
2

1

2 (
BC

~fB2dAB!

3xBC~fC2dAC!. ~12!

Here,dAB (dAC) is the Kronecker delta, which is unity fo
A5B (A5C) and 0 otherwise. The independent variables
the segment chemical potentials are given by the volu
fractions of all components except one that we denote
componentX. The volume fractionfX is of course equal to
12(BÞXfB . In order to write the flux in terms off gradi-
ents instead ofm gradients~for analytical purposes! we take
the total differential of the approximate segment chemi
potential:

¹
mA

app

kT
5

1

kT (
BÞX

S ]mA
app

]fB
D

fCÞB,X

¹fB

5(
B

S dAB

fANA
2

1

NB
1xAB2(

C
fCxBCD¹fB .

~13!

The gradients of the approximate and exact potentials
indistinguishable if only monomers are present or if the s
tem is homogeneous.

D. Flux equations

One of the constraint sets for MFSD, namely, Eq.~3d!,
can easily be translated in terms of material fluxes by
equation of continuity

]fA~z!

]t
5052¹JA~z!, ~14!

whereJA is the flux of segmentsA. Obviously, in the station-
ary state, the fluxes are independent of time and position.
simplification, we do not explicitly write thez dependence o
the quantities in the following. We first present the derivati
of the so-called slow-mode flux expression within the fram
work of the MFSD method. These fluxes will then be rewr
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ten in terms of Onsager coefficients. Using this short no
tion, the fast-mode flux expression can readily be derive

1. Slow-mode flux

The starting point is the Smoluchowski equation@35#:

]fA

]t
5¹

1

zA
~kT¹fA1fA¹UA!. ~15!

Here, zA is the monomer friction constant andUA is the
potential field felt by segments of typeA. Two contributions
to this potential can be distinguished:UA(z)5EA(z)
1P(z). There is a contributionEA arising from molecular
interactions with segments of other types:

EA5kT(
B

xAB^fB&. ~16!

The other contributionP is a pressure term due to the r
quirement of incompressibility, which causes the fluxes
different segment types to be coupled.

Comparing the Smoluchowski equation with Eq.~14!
yields for the flux of segmentsA:

JA
s 52

kT

zA
fAS 1

fA
¹fA1¹(

B
xAB^fB&1

¹P

kT D , ~17!

where we have substituted Eq.~16!. The superscripts refers
to the slow-mode approach.

The derivative offA is found by writingfA(z,s)/CA in
Eq. ~9! asGA(z)^GA(z,s21u1)&^GA(z,s11uNA)&:

¹fA

CA
5¹S GA~z!(

s
^GA~z,s21u1!&^GA~z,s11uNA!& D

'(
s

^GA~z,s21u1!&^GA~z,s11uNA!&¹GA~z!.

~18!

In the last line, we used the so-called local coupling appro
mation ~LCA!, in which the kinetic coupling between seg
ments is neglected: one segment of a chain is allowed
move independently from the motions of its neighbor se
ments. The LCA was also used by Fraaije in the dens
functional theory@9#. It might be a serious approximatio
~see Ref.@43# and references therein!, but it allows efficient
computation and analytical comparisons. Pair correlat
functions or a completely different approach would
needed to avoid the LCA@43#. Substitution of Eq.~18! into
the first term of Eq.~17! yields

¹fA~z!

fA~z!
5

1

GA~z!
¹GA~z!5¹ ln GA~z!. ~19!

By inserting Eq.~19! and the well-known Einstein relation
for the diffusion coefficient (DA5kT/zA) into Eq. ~17! one
arrives at
2-5
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JA
s 52DAfA¹S ln GA1(

B
xAB^fB&1

P

kTD
52DAfA¹S mA

kT
1

P

kTD . ~20!

For the second version of Eq.~20!, Eq. ~8a! in the formuA
52kT ln GA and Eq.~11! for mA were used. The last un
known flux contribution¹P is obtained by requiring

(
A

JA~z!50 ;zP@1,M #, ~21!

which is the incompressibility constraint. From Eqs.~20! and
~21! it is found that

¹P

kT
52

1

(
A

DAfA

(
A

DAfA

¹mA

kT
. ~22!

Substituting this into Eq.~20! results after some rearrang
ment in the final expression for the slow-mode flux of se
mentsA:

JA
s ~z!52

DAfA~z!

(
C

DCfC~z!
(
B

DBfB~z!¹S mA~z!2mB~z!

kT D .

~23!

2. Onsager coefficients

The flux is conveniently written in terms of Onsager c
efficientsLA(z), by which the single-chain dynamics ent
the expressions for the collective dynamics. The Onsa
coefficients as defined by Brochard@15# and Kramer@16#
relate the unconstrained fluxes to their driving forces:

JA
u52LA¹mA . ~24!

The superscriptu indicates that the incompressibility con
straint is not yet taken into account. The Onsager coefficie
are generally written in terms of segment mobilitiesBA :

LA5BAfA . ~25!

Combining this with Eq.~24! for the unconstrained flux an
comparing the result with Eq.~20! where the constraint is
given by the pressure term, it is found thatBA5DA /kT
51/zA . Using this relation for the mobility coefficient, th
slow mode flux@Eq. ~23!# may be written in terms ofL ’s as

JA
s 52

LA

(
C

LC

(
B

LB¹~mA2mB!. ~26!

In Appendix A we show that this flux expression obeys O
sager’s reciprocal relations.

The relationBA51/zA is only valid for the Rouse regime
Other expressions for the mobility coefficients may also
used in Eq.~26!. If a polymer chain is longer than the en
01180
-

er

ts

-

e

tanglement length, Rouse behavior may no longer be
sumed; the average mobility of the segments will decre
due to the entanglements. According to Ref.@15#, this leads
to a correction factor (Ne)A /NA so that BA
5(Ne)A /(NAzA), where (Ne)A is theeffectiveentanglement
length of A chains in the mixture. In pureA, the entangle-
ment length equalsNe0. If the chains are diluted by mono
meric solvents, the constraints to the segment motions
less pronounced than in pureA, so that the effective en
tanglement length may be approximated as (Ne)A5Ne0@1
2fmonomer(z)#, wherefmonomer is the total volume fraction
of all monomer components.

Alternative expressions for the Onsager coefficient mi
be obtained by including the effect of chain connectiv
~nonlocal coupling!. Such Onsager coefficients are propo
tional to the pair-correlation function@8#.

3. Fast-mode flux

The difference between the slow-mode model and
fast-mode model is the incorporation of vacancies. In
fast-mode model it is assumed that there exists a drift flux
the presence of vacancies

JA
f 52LA¹mA1fAJvac. ~27!

To obey the condition of incompressibility@Eq. ~21!#, the
flux of the vacancies is taken asJvac5(BLB¹mB , so that

JA
f 52(

B
~fBLA¹mA2fALB¹mB!. ~28!

The superscriptf indicates that it concerns the flux in th
fast-mode model. In Appendix A Onsager’s reciprocal re
tions are verified.

E. Four models

The combination of the multicomponent slow-mode fl
@Eq. ~26!# with the approximate segment chemical potenti
@Eq. ~13!# is a generalization of the binary model develop
by Brochard, Jouffroy and Levinson@15#. We refer to this
model as the BJL model. The combination of Eq.~26! with
exact segment chemical potentials@Eq. ~11!# is called the
slow-mode SCF model or the SCF-BJL model. Combini
Eq. ~28! with the approximate segment chemical potentials
a generalization of the model developed by Kramer, Gre
and Palmstro”m @16#. We refer to this model as the KG
model. The combination of Eq.~28! with exact segment
chemical potentials is called the fast-mode SCF model or
SCF-KGP model.

F. Procedure and Discretization

The stationary diffusion profiles are obtained by the f
lowing procedure. Segment weighting factors are calcula
for mixturesI and II in accordance with the desired volum
fractions in these bulk mixtures. Then the numerical ite
tions are started with an initial guess for the potentialsuA(z).
These are used to calculate the segment weighting fac
within the diffusion layer. In this calculation the bounda
2-6
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LATTICE MEAN-FIELD METHOD FOR STATIONARY . . . PHYSICAL REVIEW E68, 011802 ~2003!
conditions~Sec. II G! play a role. The weighting factors en
able the computation of the volume fractions@Eq. ~9!#. These
volume fractions are needed to check if the stop criteria
the stationary state are met. If not, a new iteration loop w
newly chosen potentialsuA(z) is started. This is repeate
until the the volume fractions obey the constraints. One c
straint is a constant material flux for every component@Eq.
~3d!#. Therefore, the flux equation needs to be written
discrete form for use in the lattice model. The continu
equation for a lattice with a one-dimensional gradient rea

]fA~z!

]t
5JA~z21→z!1JA~z11→z!. ~29!

As an example, we take the slow-mode flux expression,
~26!, and rewrite it for convenience as

JA
s ~z!5(

B
VAB~z!¹„DmAB~z!…, ~30!

whereDmAB is shorthand formA2mB . ThenJA(z21→z)
in the lattice can be calculated as

JA
s ~z21→z!5

1

2 (
B

@VAB~z21!1VAB~z!#

3
DmAB~z!2DmAB~z21!

z2~z21!
. ~31!

The stop criteria for the stationary diffusion become for
layers and for all components except one~sayX):

(
B

@VAB~z21!1VAB~z!#@DmAB~z!2DmAB~z21!#

1@VAB~z!1VAB~z11!#

3@DmAB~z11!2DmAB~z!#50. ~32a!

The stop criterion for componentX is for all lattice layers:

fX~z!512(
B

fB~z!. ~32b!

G. Boundary conditions

The boundaries of the diffusion layer deserve some e
attention. Behind the boundaries (z<0 and z>M11) are
bulk mixtures with specified volume fractionsfA

I andfA
II . A

property of any bulk system is the condition thatGA
b(z)

5constant5^GA
b(z)&. As a result,GA

b(z,su1)5(GA
b)s and

GA
b(z,suNA)5(GA

b)NA2s11. For homopolymers or mono
mersGA

b is known:

GA
b5S fA

b

fA
refD 1/NA

. ~33!

We choose to have an abrupt transition between the b
mixtures and the system; ifz51 is the first layer in the
system, thenz50 represents a true bulk. The consequenc
01180
r
h
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s
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l

ra

lk

is

an inconsistency at the boundaries and some ‘‘forbidd
chain conformations, which will be discussed in a futu
publication. All results presented in this paper are obtain
from the ‘‘abrupt transition conditions.’’ We have used oth
boundary conditions as well@e.g., mirrors for the calculation
of f combined with bulk conditions for the calculation of th
driving forces, or taking GA(z<0,s)5GA

I and GA(z
<0,su1) still depend onGA(z.0,s* ,s,1)], but the influ-
ence on the resulting diffusion profiles are negligible.

H. Diffusion coefficients

An advantage of using the approximate segment chem
potentials is that the flux-expressions in terms ofm gradients
can easily be rewritten in terms off gradients. This allows
the analytical description of the stationary diffusion profil
for some simple systems. Since we only consider ather
systems in the following and since we wish to avoid unn
essary multiline equations, we assume thatxAB50 for all
A,B in the present paragraph. Generally, the flux express
in terms off gradients reads

JA52(
B

D̃AB
(X)¹fB ~34!

by which the mutual diffusion coefficients are defined. T
superscriptX indicates that all volume fractions, except th
for the component containing segment typeX, are taken as
the independent variables for the flux. For example, the fl
of segmentsA in a binary (A/B) system can be written in
two ways:

JA52D̃AA
(B)¹fA52D̃AB

(A)¹fB . ~35!

Brochard @15# derived for the mutual diffusion coefficien
D̃AA

(B) for athermal binary systems:

D̃AA
s(B)

kT
5

LALB

LA1LB
S 1

fANA
1

1

fBNB
D . ~36!

As discussed in Sec. I, (D̃AA
s(B))21 is proportional to (1/LA

11/LB)21. By substituting Eq.~13! into the slow-mode flux
equation~26! and after some rearrangement, the mutual d
fusion coefficients for multicomponent systems in the B
model are found to be

D̃AB
s(X)

kT
5

LA

(
C

LC

F LX

fXNX
2

LB

fBNB
2(

Q

LQ

fANA
~dAX2dAB!G .

~37!

It is easily shown that for binary systems Brochard’s mut
diffusion coefficient is recovered.

The mutual diffusion coefficients for the Kramer mod
are obtained by inserting Eq.~13! into the fast-mode flux
equation~28!:
2-7
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D̃AB
f (X)

kT
5S fA(

C
LC2LAD S 1

NB
2

1

NX
D

2fAS LB

fBNB
2

LX

fXNX
D2

LA

fANA
~dAX2dAB!

~38!

so thatD̃AB
f (X) is a linear combination ofL ’s.

Obviously, if fX is not an independent variable of th
flux, D̃XX

(X) andD̃AX
(X) should vanish, which is satisfied by Eq

~37! and ~38!. D̃AA
(X) is always positive forXÞA. For binary

systems¹fA52¹fB , thus according to Eq.~35!, we must
find that D̃AA

(B)52D̃AB
(A) , which can also be verified by Eqs

~37! and ~38!.

III. RESULTS

We illustrate the concepts of the MFSD method by sho
ing the stationary diffusion profiles for various athermal s
tems. Stationary diffusion profiles are the volume fractio
for each component as a function of the spatial parametz,
such that the two bulk mixtures have the desired composi
and such that there is no accumulation of material anywh
between these bulk mixtures. We stress again that the sta
ary solution is the only solution of the MFSD method. We
not obtain the stationary profiles by following the physic
trajectories towards the steady state, but directly by com
ing the volume fraction profiles that obey all conditions f
the steady state. As outlined before, the method has b
applied for four different diffusion models. We treat bina
and multicomponent systems separately. All binary syste
considered in this study have the boundary conditionsfA

I

50.99 andfA
II 50.01. First, the results are presented. Af

that, an attempt to rationalize them is given.
The most simple systems to study stationary diffusion

those for which all components have the same chain lengN
and the same mobilityB. Figure 2 presents the MFSD sta
tionary diffusion profile for such a system. It is seen th

FIG. 2. Stationary diffusion profiles in a binary system calc
lated with four different models.NA5NB5Ne05100, BA5BB

51. All four models give the same result, with linear profiles.
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these simple systems give rise to linear volume fraction p
files in the stationary state, independent of the model us
The linear profiles turn into convex profiles if the comp
nents have either differentN or differentB, as shown in Figs.
3 and 4, respectively.

In Fig. 3 we have plotted the stationary diffusion profil
for two systems: one system hasNA /NB55, and the other
hasNA /NB5250. This figure shows that the BJL and KG
results~dashed curves! coincide if the components only dif
fer in their chain lengths. The SCF-BJL and SCF-KGP mo
els ~solid curves! also yield indistinguishable profiles fo
such systems. However, the exact calculation of segm
chemical potentials yields profiles which slightly differ from
those calculated by approximated segment chemical po
tials, in particular, for increasingf gradients and decreasin
NA /NB . The discrepancy at large¹f is a result of the as-
sumption of homogeneous mixtures in the Flory-Huggins
pression for the approximated chemical potential. It is se
that the larger the ratio between the chain lengths, the m
convex the profiles. The volume fractions change rapi
near the bulk mixture that contains a large amount of sh
~and therefore, for given segment mobilities, more mob!
chains.

If the chain lengths are the same, while the segment m
bilities are different, the profiles no longer coincide for a
of the four models, as shown in Fig. 4. For these system
is the diffusion mechanism~slow- or fast-mode! that mainly
determines the stationary diffusion profiles; it is less imp
tant whether the segment chemical potentials are calcul
exactly or not: KGP profiles compare very well with SC
KGP profiles@Fig. 4~a!#, and BJL profiles are similar to SCF
BJL profiles@Fig. 4~b!#. Since we have combined the profile
for two different systems in Figs. 4~a! and 4~b! ~namely, for
BB /BA55 andBB /BA5250), it can directly be seen that th
slow-mode expression is more sensitive to the segment
bilities than the fast-mode expression. The volume fractio
change rapidly near the bulk mixture that contains a la
amount of components consisting of relatively mobile se

- FIG. 3. Stationary diffusion profiles in two binary systems c
culated with four different models.NA5500, NB5100 or 2, 1/zA

55, 1/zB51, Ne05100 so thatBA5BB51. Solid lines correspond
to calculations with SCF-potentials~SCF-BJL and SCF-KGP!,
dashed lines correspond to approximate potentials~BJL and KGP!.
2-8
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LATTICE MEAN-FIELD METHOD FOR STATIONARY . . . PHYSICAL REVIEW E68, 011802 ~2003!
ments. This behavior is more pronounced when the ratio
tween segment mobilities increases.

Comparing Figs. 3 with 4~a!, it appears that longer chain
act like less mobile components. In particular, the station
diffusion profiles calculated by the KGP model were fou
to be exactly the same for two binary systems (a) and (b)
if ( NA /NB)(a)5(BB /BA)(b) while (BB /BA)(a)515(NA /
NB)(b). In other words, a system containing two compone
with different chain lengths but equal segment mobilit
may be simulated by a system containing two monomers~or
two polymers of the same length! with different segment
mobilities. This is only true for the KGP model. This ma
suggest that the lower mobility of longer chains might
compensated by a higher mobility of its constituting se
ments. It would then be expected that the components wo
act as mutually indistinguishable if the system parame
were chosen such thatNA /NB5BA /BB . Indistinguishable
components would result in linear profiles~cf. Fig. 2!. Figure
5 shows that this is true for the two slow-mode models,
not for the fast-mode models. Note that the fast-mode res
differ significantly when the exact segment chemical pot

FIG. 4. Stationary diffusion profiles in two binary systems c
culated with four different models.NA5NB5Ne05100, BA51,
and BB55 or 250. Solid curves correspond to SCF potentia
dashed ones correspond to approximate potentials. Part~a! is ob-
tained by the two fast-mode models, part~b! by the slow-mode
models.
01180
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tials are replaced by approximate ones. The discrepancy
not only occur for the largestf gradients. The compariso
between the models for other choices of parameters gene
yields the same conclusions as derived from Fig. 5: usu
the slow-mode results are less affected by the way to ca
late the segment chemical potentials than the fast-mode
sults.

The four variants of the MFSD method were also used
calculate the stationary diffusion profiles for ternary system
two equally long polymers in a solvent. The differences b
tween the models are too small to be observed in the syst
presented in Fig. 6. This figure shows three systems
differ only slightly in the imposed volume fractions at th
left-hand boundary (z50): fB(0)50.1 in all cases and
fA(0)50.75 ~top!, 0.8 ~middle!, and 0.85~bottom!. It is
seen that these small differences result in very different p
files. The solvent~monomer! has a rather flat and approx
mately linear profile in all cases. The largestf gradients of
the polymers are found at the highest monomer concen
tion.

Another striking example of a ternary system is presen

,

FIG. 5. Stationary diffusion profiles in a binary system calc
lated with four different models.NA510, NB5Ne05500, BA51,
BB550, so thatNA /NB5BA /BB . Solid curves are calculated b
the fast-mode models and dashed ones are calculated by the
mode models. For part~a! SCF-potentials are used, for part~b!
approximate potentials.
2-9
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SCHEINHARDT-ENGELS, LEERMAKERS, AND FLEER PHYSICAL REVIEW E68, 011802 ~2003!
in Fig. 7. Despite the fact that the imposed values forfA are
the same at both sides of the system@fA(0)5fA(M11)#,
this component has large gradients within the system.
profiles are the same for the fast- and slow-mode calc
tions, as was the case for binary systems in which all s
ments had the same mobilities. Small differences occur if
segment chemical potentials are not calculated exactly. H
ever, the longer the polymer chains, the larger the differen
~not shown!.

As explained in Sec. II G, our boundary conditions a
such that in the vicinity of the bulk mixtures some cha
conformations could not occur. The stationary diffusion p
files do not suffer from these boundary conditions; the p
files scale accordingly with the system size as long as
system is not too small in comparison with the chain lengt
This is shown in Fig. 8, where we plotted the diffusion pr
files versus the normalized distance parameterz/(M11).
The diffusion profiles are not influenced by the size of t

FIG. 6. Stationary diffusion profiles in a ternary system conta
ing two homopolymers (A and B) and one monomer (C). NA

5NB5Ne05100, NC51, BA5BB5BC51. The only parameters
that were varied in systems~a!–~c! arefA(0) andfC(0). All mod-
els give essentially the same results.
01180
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system ifM'N, whereN is the length of the longest poly
mer chains. Note that we find oscillating volume fractio
profiles if the chains are long compared to the system s
(N5400, M5100) and when the driving forces are calc
lated exactly. Using the approximate segment chemical
tentials does not give oscillating profiles.

IV. DISCUSSION

From Eqs.~26! and ~28! it is easily concluded that the
slow-mode and fast-mode models are indistinguishable
LA(z)/fA(z)5LB(z)/fB(z) ;A,B,z, which meansBA(z)
5BB(z)5B(z) ;A,B,z. This can only be true ifB is inde-

-

FIG. 7. Stationary diffusion profiles in a ternary system conta
ing one monomer~C! and two homopolymers (A andB) with equal
chain lengths and segment mobilities, and equalfA but different
fB at the boundaries. Note thatfA(0)5fA(M11). NA5NB

5Ne05100, NC51, BA5BB5BC51. Solid curves are obtained
by the SCF potentials and dashed ones are obtained by approx
potentials. No difference is found between the fast- or slow-mo
mechanism.

FIG. 8. The same system as in Fig. 7 for longer chains (NA

5NB5Ne05400) and for various system sizesM, calculated by the
SCF potentials. Volume fractions are now plotted vs the normali
z variable. Increasing the system size aboveM5N does not change
the shape of the profiles significantly.
2-10
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TABLE I. Stationary binary systems:f derivatives of the diffusion coefficients andf gradients. The

expressions forD̃AA
(B) were obtained from Eqs.~36!–~38! after insertingLA5BAfA and LB5BBfB @Eq.

~25!#.

NA5NB5N NA5xNB NA5NB5N
BA5BB5B BA5BB5B BB5xBA

~Fig. 2! ~Fig. 3! ~Fig. 4!

D̃AA
(B) BkT

N

BkT

NA
~fB1xfA!

BBkT

N

1

~fA1xfB!

BJL model@15# ]D̃AA
(B)

]fA

0
BkT

NA
~x21!

BBkT

N

~x21!

~fA1xfB!2

]u¹fAu
]fA

0 ,0 for NA.NB ,0 for BA,BB

.0 for NA,NB .0 for BA.BB

D̃AA
(B) BkT

N

BkT

NA
~fB1xfA!

BAkT

N
~fB1xfA!

KGP model@16# ]D̃AA
(B)

]fA

0
BkT

NA
~x21!

BAkT

N
~x21!

]u¹fAu
]fA

0 ,0 for NA.NB ,0 for BA,BB

.0 for NA,NB .0 for BA.BB
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pendent ofz. Figures 2, 3, 7, and 8 show that this exa
agreement between the slow- and fast-mode models is
deed found. In the remainder of this discussion, we first d
cuss some analytical descriptions and then focus on the
eral characteristics of binary and multicomponent system

A. Comparison with analytical results

Due to our choice of simple systems, we can compare
MFSD results with analytical results. Analytical expressio
for fA(z) are obtained by solving Eq~34! in combination
with the diffusion coefficients of either the BJL model or th
KGP model.

Suppose that all components have the same mobilityB ~so
that the BJL and KGP models are identical! and the same
chain lengthN. The flux is then simply given byJA(z)5
2(BkT/N)¹fA(z) ;A,z. To satisfy the condition of con
stant fluxes, the analytical expressions forf are linear func-
tions ofz. The MFSD result obeys this linear behavior for a
four models, as shown in Fig. 2.

For binary systemsfA(z) can be obtained by solving
2*D̃AA

(B)dfA5JAz1k1. Expressions forD̃AA
(B) for various

simple cases are given in Table I. WhenBA5BB and NA

ÞNB , D̃AA
(B) is given byD̃AA

(B)5a2bfA with a5BkT/NA and
b5BkT(1/NA21/NB). The result forNA.NB is

fA~z!5
a

b
2

1

b
Aa212b~k11JAz!. ~39!

The integration constantk1 and the fluxJA can be found
from the known values offA(0) andfA(M11). Due to the
01180
t
n-
-
n-

.

e
s

condition thatNA.NB , the sign of the square root term
unambiguously determined. The volume fraction profile
the short-chain component simply follows fromfB51
2fA .

In case of equal chain lengths butBAÞBB , we find for
the BJL modelD̃AA

(B)5a/(cfA1BB), with a5BABBkT/N
and c5BA2BB . Thus, forBB.BA , the stationary volume
fraction profile is

fA~z!5
k2

c
expH 2

cJA

a
zJ 2

BB

c
~40!

with k25exp$2ck2 /a%. The same system has for the KG
model D̃AA

(B)5a2cfA with a5BAkT/N and c5(BA

2BB)kT/N, so that

fA~z!5
a

c
2

1

c
Aa212c~k31JAz!. ~41!

It is not possible to find analytically an explicit expressio
for fA(z) if both the chain lengths and the segment mob
ties are chosen arbitrarily. In Fig. 9 analytical expressio
~39!–~41! are plotted together with the corresponding resu
from the MFSD method. They match each other exactly.

In Appendix B, we show that for the three-compone
system in Fig. 7 withBA5BB5BC , NA5NB , and NA
.NC , the analytical expressions for the volume fractio
read

fA~z!5
aJA

bJC
@d~z!21#1k5exp$2d~z!%,
2-11
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fB~z!5
aJB

bJC
@d~z!21#2k5exp$2d~z!%, ~42!

fC~z!5
a

b
@d~z!21#11,

where a5BkT/NA , b5BkT(1/NA21/NC), d(z)
51/aAs1tz, s5a212bk4 , t522bJC and JC52JA
2JB . JA , JB and the integration constantsk4 and k5 are
given by the compositions of the bulk mixtures. These eq
tions reproduce the profiles in Fig. 7~including the minimum
in fA) with the same accuracy as shown for binary syste
in Fig. 9.

The exact agreement between the analytical profiles
the MFSD results proves the proper performance of
MFSD method. In addition, they show that the abrupt tra
sition between the system and the bulk mixtures in
MFSD method does not disturb the diffusion profiles. Ho
ever, if the system is small compared to the longest cha
small discrepancies may occur between the analytical res
and the MFSD results.

B. General characteristics of binary systems

We now focus on general characteristics of the diffus
profiles for binary systems. It is convenient to analyze h
¹f should change withf according to the flux expression
for the approximate models, since this behavior of¹f can
readily be checked by plots of diffusion profiles. Sin
¹fA52JA /D̃AA

(B) andJA5constant, we have

]¹fA

]fA
52

¹fA

D̃AA
(B)

]D̃AA
(B)

]fA
. ~43!

FIG. 9. Comparison of results from the MFSD method~mark-
ers! with the corresponding analytical results~curves! in different
binary systems. In all casesM5100, NB5100, andBA51. The
circles are for the BJL and KGP model withNA /NB55 and BA

5BB . The squares are for the BJL model withNA5NB and
BB /BA5250. The crosses are for the KGP model withNA5NB and
BB /BA5250.
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Given thatD̃AA
(B) is positive, it is concluded that for binar

systems]D̃AA
(B)/]fA and ]u¹fAu/]fA must have opposite

signs. In Table I different classes of binary systems are
tinguished by different combinations of parameters. For e
class and for both approximate models the sign
]u¹fAu/]fA is evaluated by first writing the general expre

sion for D̃AA
(B) and then calculating its derivative with respe

to fA . We first note that the KGP model yields the sam
stationary diffusion profiles for the second~Fig. 3! and third
~Fig. 4! classes if (NA /NB)equalB5(BB /BA)equalN , as can be
seen from the diffusion coefficients in the second and th
columns of Table I. This implies that the mobility of a cha
can effectively be changed by either its chain length or
segment mobility. The general conclusion that can be dra
from Table I is that the larger the fraction of relative mob
component, the steeper the volume fraction profiles for s
tionary diffusion: it is observed that]u¹fAu/]fA is positive
if fA is the relative mobile component. The first colum
shows that if both components have the same mobilities,
gradients of the volume fractions are constant. The sec
column implies an increasing¹ufu for increasing volume
fraction of the shorter, and therefore more mobile, h
mopolymer. These columns refer to classes of systems
which the slow-mode and the fast-mode fluxes are the sa
in accordance with previous statements. The third column
Table I refers to systems for which the slow-mode and fa
mode models no longer coincide, but the general conclus
remains valid for both models.

Barrer @44# and Crank@45# also present stationary diffu
sion profiles for concentration-dependent diffusion coe
cients. Their general conclusion is that the concentration p
files are convex towards thez axis if ]D̃AA

(B)/]cA,0, and

convex away from thez axis if ]D̃AA
(B)/]cA.0. Our results

are in agreement with their conclusion, but we can state m
specifically that the profiles are convex towards thef axis if
]f fast/]z,0 and vice versa, wheref fast refers to the relative
mobile component. This general behavior can be underst
by considering how these stationary profiles develop fr
the initial profile att50, which is assumed to be discontinu
ous atz5 1

2 M @see Fig. 10~a!#. Suppose the major compone
at the left side of the system consists of relative mobileA
segments, whereas at the right side mainly low-mobileB
segments are present. From Table I it follows th
]D̃/]f fast,0 so that the diffusion coefficient is smaller
the left than at the right. SegmentsA start diffusing to the
right by exchanging their positions with segmentsB. At first
instance, thef gradients at both sides will be simila
¹fA(z5 1

2 M2e)'¹fA(z5 1
2 M1e) @Fig. 10~b!#. However,

the gradient atz5 1
2 M1e vanishes more rapidly than atz

5 1
2 M2e due to the larger diffusion coefficient@Fig. 10~c!#.

This results in flatter profiles at low concentration of mob
component.

Comparing the approximate models with the exact m
els, we found two situations in which discrepancies may
cur. First, discrepancies occurred if the system was sm
compared to the chain lengths. The oscillations in Fig
were only found if the driving forces are calculated by t
2-12
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FIG. 10. Schematic picture of the developing diffusion profiles for fast component diffusing to the right and slow component to
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exact segment chemical potentials and if the chains are
compared to the system size. The smaller the system o
longer the chains, the larger the gradients in the region
which the chains find themselves. In other words, the
sumption of local homogeneity, as used for the approxim
segment chemical potentials, is incorrect for such small s
tems with long chains. Second, discrepancies between
proximate and exactfast-modecalculations occurred if the
components had both dissimilar chain lengths and dissim
segment mobilities~e.g., Fig. 5!. In general, agreement wa
found between BJL and SCF-BJL for such systems. In ot
words, the fast-mode model seems to be more sensitiv
the calculation of the driving force than the slow-mo
model. Probably, the error in¹mA is compensated by th
error in ¹mB in calculations applying the slow-mode fluxe
since the driving forces appear as¹(mA2mB) in these flux
expressions@cf. Eq. ~26!#. On the contrary, in the KGP
model, the errors in¹m are weighted by segment mobilitie
due to the termsBA¹mA2BB¹mB in the flux expressions
@Eq. ~28!#.

C. General characteristics of multicomponent systems

Figure 6 can now be understood from Table I. Since
homopolymer components in Fig. 6~b! are indistinguishable
the chemical potential of the monomer component is c
stant. Effectively, this system refers to binary diffusion
two homopolymers with equal chain lengths and mobiliti
for which the profiles must be linear. At first instance, Fig
6~a! and 6~c! may also be interpreted as the stationary dif
sion profiles for binary mixtures, one component being
monomer, the other the combination of both polymers.
deed, as predicted by Table I, the profiles change rapidl
high monomer concentrations. This is true not only for t
monomer and the total of the two polymers, but also for
individual polymer components. This can be understo
from the observation that the polymers are identical and t
have a similar absolute difference betweenf I andf II . As a
result, they must behave similarly and with opposite gra
ents.

A first remark for the three-component system in Fig
concerns the behavior of polymerA. Despite the equal vol-
ume fractions in both bulk mixtures, its volume fractio
within the system is not constant. Due to the requiremen
stationary diffusion, the flux of segmentsA needs to be con
stant throughout the system. For this particular system,JA is
found to be negative;A segments diffuse from the right t
the left. This implies that for small values ofz the A seg-
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ments diffuse against a concentration gradient. This phen
enon is called ‘‘uphill diffusion.’’ It is found only in multi-
component systems and must be due to either diffus

coupling of components~large uD̃AB
(X)u for AÞB) or negative

‘‘main diffusion coefficients’’ (D̃AA
(X),0). In our system,

D̃AA
s(C)5D̃AA

f (C)5fA@1/NC1fB /(fANA)#'fA.0 and D̃AB
s(C)

5D̃AB
f (C)5fA@1/NC21/NB#'fA @see Eqs.~37! and ~38!#.

The relatively large cross diffusion coefficientD̃AB
(C) drives

the flux of A segments towards the region of lowfB . Ex-
perimental evidence for uphill diffusion has been repor
frequently for metallic systems and in the context of geolo
cal studies@46–48# in which all diffusing components hav
nearly equal sizes. Negative main diffusion coefficients ha
been measured in ternary surfactant mixtures@49#. Uphill
diffusion has been found in theoretical studies as w
@50,13#, for example, as a result of interparticle interaction
We are not aware of any reports on uphill diffusion only d
to chain-length effects.~Remind that we consider atherm
systems.! Note thatA segments havefA(0)5fA(M11),
but mA

chain(0),mA
chain(M11), as a result of the differen

monomer contents at both sides.
The profile of the monomer can be understood by cons

ering the system as a binary mixture, since the polymers
indistinguishable. The monomer concentration must the
fore change rapidly at the left side, where its concentratio
maximal.

V. CONCLUSIONS

The equilibrium Scheutjens-Fleer method has been
tended to create a new framework for the modeling of s
tionary diffusion in polymer systems. The numerical alg
rithm converges fast and smoothly to stationary volu
fraction profiles that obey the imposed volume fractions
the system boundaries. It is important to note that, altho
we implemented the transition between the bulk mixtu
and the gradients in a rather rough way, the diffusion profi
did not suffer from it. Two theories, presented in the liter
ture for binary homopolymer diffusion and referred to
‘‘slow mode’’ and ‘‘fast mode,’’ respectively, were combine
with two methods to calculate the segment chemical pot
tials. This yielded four models for the fluxes. The paramet
for the flux equations are the Flory-Huggins interaction p
rametersx, the chain lengths of the componentsNA , the
entanglement length of the componentsNe , and the mobili-
ties of the constituent segments 1/zA . In general, the diffu-
2-13
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sion profiles were more sensitive to the applied theory~slow
mode or fast mode! than to the calculation of segmen
chemical potentials. However, results from the two slo
mode models are more similar than those from the two f
mode models. By analytical analysis of diffusion coef
cients, we were able to verify the usually asymmet
diffusion profiles. We have thereby verified the MFS
method since the analytical results matched exactly the
sults from the MFSD method. It has been found for statio
ary diffusion profiles that the volume fractions change m
rapidly at the location where the amount of mobile comp
nents is larger. The mobility of components is determin
both by the segment mobilities and by their chain lengt
We only studied athermal systems, but mutually interact
components might be studied as well by the MFSD meth
It is, therefore, possible to study interfaces in the presenc
concentration gradients, as well as diffusion through pore
membranes that energetically interact with some com
nents. Another interesting aspect of the MFSD method is
it provides information about the chain conformations; t
information was not discussed in the present paper and
be presented elsewhere.
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APPENDIX A: ONSAGER’S RECIPROCAL RELATIONS

Mass transport driven by chemical potential gradie
may be written in the standard form of Onsager’s pheno
enological equations

JA52(
B

LAB¹mB , ~A1!

whereLAA are the main transport coefficients andLAB are
the cross coefficients describing the coupling between
fluxes. According to Onsager’s reciprocal relations
should haveLAB5LBA ;A,B.

The slow-mode flux of Eq.~26! may be written in the
form of Eq.~A1! by realizing that the summation in Eq.~26!
may also be taken over all segment types exceptA and by
using (BÞALB5(BLB2LA . We then obtain for the slow
mode transport coefficients,

LAA
s 5

LA
2

(
C

LC

2LA , ~A2a!
em
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LAB
s 5

LALB

(
C

LC

, ~A2b!

so that Onsager’s reciprocal relations are obeyed.
Before we rewrite the fast-mode flux of Eq.~28! we may

first add the termLA(BfB¹mB . This term equals 0 accord
ing to Gibbs-Duhem relation(BfBdmB50. Rewriting the
extended Eq.~28! in the form of Eq. ~A1! yields for the
fast-mode transport coefficients,

LAA
f 5LA~2fA21!, ~A3a!

LAB
f 5fALB1fBLA , ~A3b!

so that again Onsager’s reciprocal relations are obeyed.

APPENDIX B: DERIVATION OF EQUATION „42…

For a three-component system withNA5NB and BA
5BB5BC , we have a set of two independent fluxes, whi
may be written by the help of Eqs.~34! and either Eq.~37! or
Eq. ~38! as

JA52a¹fA1bfA¹~fA1fB!, ~B1!

JB52a¹fB1bfB¹~fA1fB! ~B2!

wherea5BkT/NA and b5BkT(1/NA21/NC). We want to
solve this set forfA(z) and fB(z) with 0<fA(z)1fB(z)
<1 for zP@0,M11#. The values for fA(0), fB(0),
fA(M11), andfB(M11) are known.

Summation of the differential equations and defini
fA(z)1fB(z)5h(z), we find forh(z),

h~z!5
a

b
6

1

b
Aa212b~k42JCz!. ~B3!

The integration constantk4 and the fluxJC52(JA1JB) can
be calculated fromh(0) andh(M11). h(z) must be posi-
tive and for our specific case (NA.NC) we havea.0 and
b,0. Therefore, we must select the minus sign in Eq.~B3!.

Using h(z), we can now solvefA(z) from Eq. ~B1! by
the standard procedures of separation of variables and v
tion of parameters. This introduces a new constantk5 . k5
andJA may be calculated fromfA in z50 andz5M11. JB
is then known from the values forJC and JA . fB(z) is
simply the difference betweenh(z) and fA(z), andfC(z)
512h(z).
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